
ass ivdy ParallclSu pmx)l n]mt cl”

IIong Q, l)ing and Robcrl 1). IWrraro
Jcl Propulsion 1 ,HbmV]lmsy

Grlilornia lnstilule 01 ‘1’whnology
Pasa(kw,CA91109

AINrl’RACrJ’, We have designed and implemented a set of highly efficient and highly scalable algorithms for
an urrstmctured computational package, the PSAS data assimilation package, as demonstrated by detailed
performance analysis of systematic mm on up to51 l-nodes of an Intel l’aragon. l’hc preconditioned Conju-
gate Gradient solver achieves a sustained) 8 Gflops pcr’formance. Consecjue.ntly, we achieve an unprcce-
clcnted 100 -fold reduction in time, to solution on the Intel l’ara.gon over a single head of a Cray C90. ‘1’his not
only exceeds the daily performance requirement of the l~ata Assimilation office at NASA’s Godclarcl Space.
l;light Center, but also makes it possible to explore much larger and challenging data assimilation problems
which ate unthinkable on a traditional compute~ platform such as the Clay C90.

1. introduction

IJata assimilation extracts maximum amount of information flom available observations using climate n~od-
els of liarlh system. ~’hc assimilation transforms observations from diverse sources at arbitrary space. and
time locations into a regulally gridded, time-continuous data set. It propagates information into unobserved
regions thereby complement iug the obsewat ions.

l’he physically-consistent, time-continuous data set defined on regularly spaced grid points produced by the
data assimilation has inherent usefulness in a broad range, of applications. One of its puimary usc is to provide
a direct confrontation between numerical model predictions with actual observations, i.e., incorporating the,
actual observations into nurnerjcal weather prediction ancl/or climate modeling. Since observational data
come with er~ors due to various uncertainties, the, data are incorporated in a statistical process much like a
Kalrnan filter[1]. Decause the observations are irregularly distrjbute,d on the, surface of the earth (both lati-
tude, longitude and elevation), and their positions change from time to time., the filtered observations must be
intcrpo]ate.d to a regular grid on which model systems are based.

‘l’he Physical-space Statistical Analysis System (PSAS) developed at the Data Assimilation Office (11A()) at
NASA’s Goddarcl Space Flight Center[2,3] is an advanced system which provides a general framework to
perfom the. above data assimilation tasks. I’his software system will play a central role in NASA’s Mission to
Planet Iiarth enterprise and is designated to replace the existing operational system at the I>AC) by 19!38.

Currently, a brute-force application of PSAS for a conlplete, analysis requires about 4-7 l-m on a single head
of a Clay C90. This falls far short of the DAO real-time computational recplirements in a production environm-
ent (see Sec. ?.). Recently, we have implemented all major parts of the. PSAS package on the lntel Parag,on.
Wc designed and incorporated several new algorithms which al c high] y efficient and scale WCII to very large
numbers (thousand) of processors. For example, a time-critical parl of the package is the sparse linear equa-
tion solver, which achieves a sustained speed of 1 S,3 GFl ,C)PS on a 51 ?-node Paragon (see Sec.. 9). “l’his re.p-
Iesents 36% of the theoretical total peak speed of the. 512-node Paragon.

As a result, the parallel PSAS package SOIVCS an 80,000 obscl vation problem in just 158 seconds (wall clock
time, including about 18 seconds spent on readingjwriting data from/to disk) on the 512-node Paragon. In
ccmt(’ast, the san~e problem takes an estimated 5 hrs of C}’U time on the CYay C90 (see Sec. 9). ‘l”his rcprc-

1

semts an unprecedented 100+ -fold reduction in solution time. ‘1’his parallel PSAS not only meets and sub-
stantially exceeds the real-time production requirements, it will in fact change the DAO operations
significantly. Many problems previously unexplored due. to their huge, computational requirements now can
bc solved in a reasonable amount of time.

2. ‘1’k IkIIa Assimilation Problcm

1,ct us first discuss the operational environment in which the data assimilation is carried out. Observations of
the weather system come from ground stations, satellites, flying balloons, and many other sources. The col-
lection of all these data within a given short time period indicate the state of the weathers stem, WO. in a nor-

[ma] ope,rat ional environment, successive obsel-vat ion data sets come in every 6 hours: WO , W02, W03,...,
giving us a record of what actually happened in the Earth surface system. Note that these clbservation data
sets are. not defined at exactly the same space locations from one. set to the next (clue to the movement of sat-
ellites, the rotation of the earth, and the irreproducibility of balloon tracks), and the number of observations
differ from set to set. Furthermore, observations come with errors due to various unce,rtail]ties.

Meanwhile, successive forecasts of the state of the weather system, wfl, wf2, w?,..., are computed using fore-
cast models, from a given initial condition. Note that in most forecast models, the weathel system on the sur-
face. of the Earth is represented by variables defined on a legular 2°x2.50 grid, with 14-22 elevation levels.

7’hme two streams of events are connected or fused together by the data assimilation process. Givem a fore-
cast wf which describes what the weather should be, and given the actual observations WO which comes with
uncertainties as reflected in the error covariance matrix 1-1, the data assimilation process is to obtain an opti-
mal estimate wf ‘I)t of the state of the weather systcm through a statistical pI ocess similar to a Kalman
filter [2,3],

wfo~t = wf + K (We- Hwf) (1)

where 11 is an interpolation operator interpolating forecast variables from grid locations to observation loca-
tions, and

(2)

is the, gain matrix. q’he matrix P contains complex physical correlations between same type and different type
variables [2.], calculated using a large number of existing]outines.

“l’his ciata assimilation accomplishes several important things. It produces the optimal data set combining
observations with the numerical forecast. It transforms the observations from diverse sources at arbi tt ary
space locations to the regular grid. ~’his alleviates the difficulties associated with observations that change
from time to time, both in number and in location, and propagates information from obscrvecl regions to
u nobse,rvcd regions.

‘l’he optimal physically-consistent, time-continuous data set dcfimd on regularly spaced grid points produced
by the data assimilation has inherent usefulness in a broad range of applications. In particular, it can be, used
to produce more accurate forecasts by using the assimilated data set as the initial condition in computing the

loj)t , Wf?os)t, Wfml, . . .next forecast, leading to an better forecast sequence, wf Furthermore, by examining the
differences between the model forecast and the assimilated clata (not the observations data), one may get
hints ancl improve the forecast model itself to get a better forecast. (We enlphasiTc that although the data
assimilation relics on a model forecast as a correct criteria to assimilate to, forecast models are indcpmdemt
of the data assimilation,)

in operational environments, the data assimilation process is a computationally intensive task: it is repcatc.d
every AZ =. 6 hours continuously on an almost dedicated computer, consistent with the periodicity of the

?

incoming observation data. I’his leads to the real-time requirement: a sing]e assimilation cannot take longer
than the time period At . in fact, for a real-time forecast, everything add together including clata assimilation,
forecast simulation, other data gathering and n~anipulations/analy sis, etc., must be done within At. l~urther-
morc, a complete, research/study often requkes consistently assimilated data going back perhaps to the 80’s.
In fact, the ambitious re-analysis (assimilation) of the past 5 years of data relating to the Mission to Planet
1 ;arth Project would require a rate. of 120 assimilations per day in real time. ‘1’he parallel I’SAS package we
have implemented, which reduces solution time from 5 hts on C90 to 3 min on 5 12-noclc Paragon, now ade.-
quate.]y meets this challenge.

3. ‘1’l~c PSAS Algorithm

‘1’hc PSAS problem is a challenging computational ploblem because the sizes involved are large. ‘lShe number
of observations No is around 10< or more for operational systems. l’his is represented as a single vector W..
Note that all observation variables are treated equally, even though some of them, such as an east-west wind
velocity data and a north-south wind velocity data, are actually taken at the same space locations.

7’hc final assimilated data are defined on the regular grid points. At 2° x 2.5° horizontal resolution, there are
13] 04 grid points at each elevation level. q’he. smallest forecast model system contains 14 elevation levels for
four upper-air components and 3 sea-level components; they add uptoNf=(3+4x14)x13104 = 773,136
moctcl variables. l’he operational system will have 18-2.2 elevation levels, which brings Nf to 106 or more, All
of t kc variables are represented as a single vector wf, simi Iar to Wo.

It is now clear that to calculate the gain matrix K requires inverting a No x No matrix M= IIPfIIr]’+R. “l’his
would require a computation of order N03 = 1015 operations, a computation outside of today’s capabilities.
l;ortunatc]y, calculating K is only necessary if we want to compute the error covariance matrix for the assinl-
ilated data (in Kalman filter theory, K determines how errot covariance,s p~ opagate in time), and they are
ignored at present. instead, the PSAS algorithm solves the. following ec~uation for the vector x defined at the.
observation locations:

(}lPfH’’’-tR) x == Wo - IIwf (3)

“I”hc symmetric No x No matrix M = I IPfHT +R is called the innovation matrix. I_Jsing a Conjugate Gradient
method, this innovation equation can be solved with a computation of order N0

2. Afterwards, the solution x is
folded back from observaticm locations to the regular grid locations to obtain the final optimal state through
the increment

Aw = wf”~’t - wf z ~’f~ ~l’X (4)

which represents the net effect to the forecast wf due to incorporating the observation data t}uough the assinl-
ilation process. Note, Pfl I1’ is a 105 x 106 sparse matl ix.

4. ‘J’I]c Need fbr a l)ist[”il}titc(l-h4 c[]](]l”y P;tralld CompuIcr

‘1’hc clitical part of PSAS is the solution of a large. linear system of equations, the innovation equation lx. (3),
with 10~ unknowns. The challenge of the problem lies in the size of the matrix involved. ‘I’he matrix has a
size. of 105X105 with 74% of the matrix e.nt[ie,s being zero, due to the, approximation of a cutoff in correlation
of observations that are 6000kn~ apart on the earth’s surface. To store the entire matrix would require 10 GB
(in sing]c precisicm, or 20 G]] in double precision) of memory, exceeding the, capacities of any existing
se.qucntial computer. This difficulty is resolved in the, Gay C90 codes by m-computing the matrix on the, fly,
at considerable expense of CPIJ time.

3

,

.
‘1’l~cl~~e.t~~ory-b{~~lnd proble.mfitswel lintodistributcd -n~cmoryparallel architectures,w hich canhaveve,ry
]argc total memol’y.]<OJ” eXal@C, the 5] 2-node]nte] ~’al agon paral]et computer at Ca]te.ch has a tots] S 1 ~ x
32 M11:- 16GB.]~urtherrnore, the huge amount of floating point computations required for the problem can be
distributed to inciividual processors, reducing the prc]b]cnl solution time dramatically. In fact, our inlplwnem-
tation of the I’SAS problem reduced the solution time flom 5 hr on a Cray C90 to about 3 min on 512-node .
]ntel]’aragon.

5. Rdbnnulaling JVlafrix Spdrsity Pallcrns

Correlation functions between two variblcs generally have a shape, like. a damped cosine. }ior computational
convenience, they are cutoff at 6000knl where they reach mro arid the small oscillating tails are sjnl~]y

ignored. ‘l’his makes the matrix llPf H a sparse matrix with about 26% of the matrix entries nonzero. The
innovation matrix M has the same sparsity pattern. “J’his spausity level makes conventional sparse matrix tech-
niques inefficient, since they are typically used for matrices with nonmos around 2% or less. In actctition,
conventional sparse matrix techniques achieve only the memory bandwidth limited processor spe.cd due to
the indirect indexing used there.

.- %

1 Jig. 1 Regicms of observations.]:ig.a Block structure of the correlation
matrix. Only nonz,ero blocks arc shown.

l’hcse problems are resolved by imposing a StlllCtLll”al pattern to the sparse, matrix M: observations are
clivictcd into regions with nearly equal numbers using a concurrent partitioned, and the correlation cutoff is
cnfolced at the region level (see Figure 1). “~hat is, all observations in one region are either correlated to all
observations in another region or not at all, depending on whether the centers of the two regions am within
6000knl. I’his slight modification on the physical correlaticms cutoffs leads to a correct and consistent solu-
tion, which differs from the original solution by 1 -2T0 in an rms sense in our rjgorous comparisons. IIowevcr,
this modification incrcascs the calculation speed dramatically. l“he, irnposec] sti ucture is a block structure
where 74% of the. matrix blocks are idcntical]y 7e10 (see, Figure 2). Now the matrix-vector multiplication can
bc carried out using a level 2 H1.AS routirw, which is typically an order of rnagnitudc faster than the memory
bandwidth limited speed achieved by conventional spatsc matrix techniques. For example, our solver runs at
77M}J1 .01’S on 1 node of the Paragon, in contrast to about 10MIu.OPS for conventional sparse matrix tcch-
nic]ucs.

4

.

.

.
Since observations arc taken at irregularly spaced locations and they change from time to time, the PSAS
problem is an ~lnstiLlctLlred prob]en~ whose parallel implementation is generally more complicated than regLl-
lar problems. I/or this reason, we have developed a number of tools for unstructured problems, including an
observations partitioned, a matrix-block distributor and a pJ cconditioncd Conjugate Gradient (I)CG) solver.

We take a modular approach in programming structures. We carefu 11 y grouped high level data organizations,
parallel irnplementation related parts, such as partitioncr, solvers, etc., into individual modules, using struc-
tures in the C programming language. They arc clearly separated from the lower level underlying physics
details: the large number of correlations between different components, such as winds or water vapor mixing
ratios, are lather complex (about 7500 lines of Fortran code spread over 40 subroutines).]nterfaces to low
level routines are written to restrict accesses through only the matrix block assembly and one, or two C struc-
tures. The parallel codes contains 15,000 lines C codes and the 7500 lines existing Fortran codes; the. original
C90 Fortran codes has about 22,000 lines.

‘1’his approach has a number of benefits. It facilitates application development by restricting the physics part
to a sn~all section (albeit a lot of code for the complex corl e.laticms) so that the application scientists can eas-
ily modify it for various experinlents. ‘1’hese routines use familiar Fortran and are free from considerations on
how parallelism is achieved. It also maintains efficiency by using Fortran for numerical conlputations, and by
using the highly e.fficie.nt BLAS routines. For example, the PCG solver is essentially a skeleton code calling
underlying Fort[an routines and BI.AS routines for numerical calculations. More importantly, this approach
makes the high level data organi?,ation easier to develop and maintain. In fact, while we, a{ e developing the
parallel in~plementation, the scientists at the DAO arc developing new physical correlations/n~ echanisn~s,
which will be easily incorporated into the parallel package later on.

7. Solving the. Innovation ltquation

(Jbscrvatiml Partitioncr. After observations are reacl in from disk and arbitrarily distributed among proces-
sors, they are first grouped into regions of nearly same number, using a concurrent partitione.r we have previ-
ous] y deve,lopcd [2]. ‘l’he parlit ioner uses an recursive inertial bisection algorithm, therefore leading to good
aspect ratios for the resulting partitions which is best for this pI oblem. Correlations among these regions
results in the sparse block Sh”UCtL]le in the innovation rnatlix. lrnprovmncnts have bcem made to the partitione,r
so that it now l“LlnS on an arbitrary nun]bcr of processms, instead of power-s of 2 number of processors only.
}O~rthcr more, the peculiar feature that many observation data (up to 42. in a case) are actually located on the
same hori~,ontal point (varies in elevation and in data type) cause redundancies and ambiguity in the bisection
algorithm. We modified the partitioned to always put these. data into or-m group, resulting in slight variations
in number of data in each final partition.

Nlafrix l)istrihitor. IIistribution of the huge innovation matrix proceeds first by calculating sparsity pattern,
w}lich is represented by correlation lists identifying which observation regions are correlated to which other
regions. ‘1’hen a list of nonzcro matrix blocks of this ilrcgLllarly structLlred problem is generated. l’he large
number of matrix blocks (e.g., there are 34907 matrix blocks in the 512-node case) must be distributed
among the processors in a load-balanced way. This optimization problem on 34907 variables with vat ious
constraints is solved using a heuristic algorithm. Aftel an initial trial distribution and several iterative
it~~~~love.llle,nts, much like a simulated-annealing, the algorithm fincls a near-optimal ciist[-itnltion in just a few
seconds .

“1’he observation I egions are then replicated among proccssom according to the matrix-block distribution list
and the matrix blocks are calculated using the large number of Fortran routines describing the exact physical
corrcl at ions. ‘l’he calculation of matrix emti’ics is quite e,xpe.nsive because the physics corre]at ions re.qu ire
many complex operations and involves man y branching, and therefore, runs at typical scalal processor speed.

5

.
.

‘J’hc parallel package now spends a significant amount of time. (about 10-20%) on this part, in the light that
. the, other critical parts, cspecia]l y the previous dominant solvcl part, ale speeded up much more dramatically

in the parallel implementation (see Section 9).

1’(;(; Solver. The innovation equation is solved by a preconditioned conjugate-graclient iterative solver, of
which the key part is the multiplication between the global matrix and the global vector[3]. Given t}le
h-nposcd matrix block structure, the multiplication proceeds similar to what one might called a parallel block
approach for dense matrix-vector multiplication. in this parallel block approach, a dense matrix is divided
into blocks which are then distributed; and a global vector is clivickd into sub-vectors which are then distrib-
uted/replicated. Aclded to this basic algorjthrn is a flexible strLlcture to handle a block sparse. matrix (in fact,
74% of matrix blocks are identically zero for this problem), “1’he size of the matrix blocks varjes from one to
another, and the number of matrix blocks generally cannot be evenly divided by the number of processors.
l~urthe.rmow, we only store the upper-right triangle matrjx blocks due to symmetry; this allows each non-
ciiagonal matrix block to be used twice in each matrix-vector multiplication, and therefore increases the conl-
putation/comnlu nication ratio. Communication here is irmgLllar for the sparse matrix; and storing onl y upper-
right triangular half of the matrix adds more irregularity to the communication pattern. When everything is
proper]y implemented, this new algorjthrn for the “not-so-sparse” sparse matrix-vector multiplication is
highly efficient and scales well to large number of processors, as indicated by the performance numbers
shown here. We use a diagonal block prcc,ondit ioner, which reduces the requi red number of CW iterations for
a given accuracy by a factor of 2-3. The solution of the preconditioned equation is well-balanced and is car-
ricci out independently on each processor by solving one diagonal block at a time. using a standard CG solver.

8. Vhlding back to Regular Grid

Folding back the solution to a regular grid at all elevation levels, i.e., calculating AW, ~]~f~]’]’x represents
a very significant computational task, mainly due to assembling the Nf x No matrjx PflI’]’. The ma’trix Pflll’

has similar sparsity pattern as the innovation equation matrix M, e.xcc tit is not syn~rnetric any more. The
folding-back process is dominated by assembling the, huge matrix ?P 111’. Fortunately, the. matrix-vector nlul-
tiplication is carried out only once, so that the entire matrix does not need to be stored at the same time; they
are computed as needed on the fly, one matrix block after another.

Matrix Pfl 1“1’ couples variables defined at observation locations to those defined on regula[grid points. We
make use of the fact that the observation locations have been gf ouped into regions and distrjbute,d among pro-
cessors in a balanced way during the partitioning process, 1’o efficiently implement the correlation cutoff at
6000knl, the regular grid points have to be grouped into grjd regions similar to grouping of observations for
the, innovation rnatiix, and then proper] y distributed among the processors at the beginning of the fold-back
process.

Grid Regions. l’he 13,104 grid points on the 2.0x2.50 mesh are grouped into 12S static rectangular regions
based on latitudes and longitudes, which are different flonl the observation regions in shape, sipe and loca-
tion. “l’he entire surface of the globe is first divided into 11 zones, each of which is an 1 S0 strip between two
latit Ldes specifieci in a file, except at north/south poles where a zone covers the entire circular area within 9°
latitude from the pole. ‘1’hc zone covering the ecluator is divided into 18 regions. For z,oncs closer to the north/
south po]cs, they are divided into fewer and fewer regions in a manner which gives them roughly the same
awa. ‘l’he entire z,ones coverjng the north and south poles are single regions. Grid points on higher elevation
levels arc grouped similarly, such that a single g[icl region looks like a column sticking out from sea-level and
reaching up to the. upper atmosphere.

(;rid ‘1’binning, The number of grid points in each grid region varies substantially, even though all regions
have similar surface area. I/or this reason, in those zones above 45° latitLde, grid points in the longitudinal
direction are thinned gradually, so that the number of grid points remaining in each region become roughly
same as the, number of grid points in equatorial regions. “l’he total number of grid points k reduced in this way

6

. .
. .

to 8’)92. ‘l’he matrix-vector multiplication will only usc these remaining grid points, and values at the thinned
grid points are obtained by intel-polate.d from neighboring unthinned points. “l’his reduces the total computa-
tional effort by 1- 8792/13104 == 31’ZO. l’he implementation keeps this thinning process as a run-time option
so that one can check the consistency of the final solution.

Grid l)islrihtion, Since observations are already distributed, we distribute grid regions according to the
sparsity pattern of the PfllT’ matrix. CM each processor, we loop through all 128 grid regions; if a grid region
correlates to (is within 6000kn~ of) at least one of the observation regions on the processor, this grid region is
retained on the processor, Since a given gcid region may correlate to many observation regions on many dif-
ferent processors, grid regions may be copied to different processors. In fact, on average, a grid region is rep-
licated on 1/3 of all processors,

V’ol(ling Back. “l’he matrix-vector multiplication proceeds on each processor by going through all ccmelatecl
pairs between a grid-region and an observation-region. 11’or each such pair, the matrix block is first calculated.
I/or upper-air components, the matrix blocks between the observation region and the grid region at all eleva-
tion levels are calculated at once. (In this way, we can make use of the specific form of the correlations to
reduce significant] y the amount of computation requited at a later stage.) Then the multiplication between the
matrix block and subvector is carried out and the result is accumulated using a single B] .AS roLltine. “l’hey
proceed independently and sin~LlltaneoLlsly on all processors.

Next wc sum together increment sLlb-vectors on different processors to form the final results. Since the grid
regions on each processor differ, the order of increment sLlb-vectors is different as well. So we reshuffle the
sLlb-vectors on each processor into an Llniversal vector which has identical order on all processors.]n the Llni-
versal vector, the components not present on a processor are set to zero. Afterwards, a global sLm~ over the
universal vector on all proccssols is performed. “l’his final resLllts is written to a binary file. in the case where
grid points have been thinned, the universal vector components are reshuffled and the length of the increment
vector for each component at each level is restored to the original 13104, with values on thinned grid points
being simple interpolations between nearest unthinned grid points along, the longitudinal direction.

9. IWf’ormancc

‘l’he parallel PSAS package is complete, and its accuracy has been verified on smaller problems where the
seqLle.ntial resLllts can be rcadil y obtained. We carried OLIt rLIns on varioLls real problems on the lnte] Paragon
with increasing problem sizes on increasing number of processors. l’able 1 sLlmmarizes the timings for a
79,938 observations problem with folding back to all 14 elevation levels on a 51 ?-node Intel Paragon. The
time on Paragon is wall-clock time.

‘1’AIJl.lt 1. Timings fbr an 79,938 ob.servtitiml problcm OH S12-node l’aritgon

1 imc (sCT) tasks

14.6 read input drrt a

3.1 partitioning observations.
3.8 calculate non7,c10 blocks and their dis(ritmtioli lists

3.3 rcplicatc observation rvgicms

23.8 calculate matrix cntric.s

36.4 solve innovation equation using I’CG solver.
1.7 otbcr nlisccllanmus parts

sub total for innovation equation: 72

67.6 assemble 1’11 matf-ix and multiply l’l Ix

0.4 cleate grid regions, correlation lists

,
\

I’AII1.E]. ‘1’imings h ~11 79,938 obscrv:~lion prolJ]Lutt 011 5]2.-IIodc]]tiragon

.
time (see) tasks

1.5 re.-ordcr and intcq)olate inrmment vectol

sub total for folding back: 69.5

2. ‘- write incmmnt vector into c1 isk

158 total time

llrom the table, one can see that solving the innovation ecluation costs 72 seconds, which includes 36 seconds
spent cm the PCCi solver itself, 2.4 seconds on matrix entries assembly, and about 12 sec on the. parallel over-
head such as partitioning observations into512 regions and generating load-balanced distribution lists for the
correlation matrix.

‘l’he fold back now costs 70 seconds, which includes 0.4 sec spent on generating grid rcgicms and distributing/
rej>licating matrix block lists, 68 sec on assembling the matrix entries and carrying out the local matrix-vector
multiplication, and 1.5 sec on global summing of all increment vectors, restoring vector length/order and
interpolating to obtain values on thinned grid points.

‘l’he same identical tasks are also performed on the Cray C90 by J. Guo at the IJAO using the sequential Cray
codes, The CPU timings are listed in Table 2.., along with corresponding Paragon timings for comparison.
Ovcrall, the solution time is reduced by a factor of 115, from about 5 hours on the C90 to 3 minutes on a 512-
node Paragon, (Because of the expense of C90 time, the complete run for this large problem was not carried

‘1’AII1,Ic 2. ‘J’ill]irlg Conli}arisol) Wiill Gay C90. ~ indicates estin}tites. Timings on ~90 are obtainc(i by J. Cm) at l)A().
\

Tasks 1 -bemi Cray C90 512-11(MIc ln[ei Pdragorl

Read data and solve equation 9120 87

l;old back and wl-ite d a t a “9120~ ‘“‘ 71

“lbtal 18240” 158*

out. instead, estimates were made based on runs on smaller problems.) This 100-t- -fold reduction in solution
time is unprecedented in the area of high performance computing.

We analyzed the performance of the PCG solver in further detail, because our parallel algorithm design is pri-
rnaril y focused on it. “l’he solver achieves a sustained speed of 18.3 GF1 .01’S on a 5 12-node Paragon for an
85000 observation problem (see Figure 3.). ‘l-his represents 36% of the theoretical total peak speed of 51.2
G};I .OPS. The solver achieves 77MF1 ,OPS (77% peak speed) on one node. The reduction of efficiency on
51 ? nodes is due to various factors, such as communication, load-imbalance, etc. ‘1’hese numbers indicate the
high efficiency the package has achieved. (rJ’he use o the level 2 B1.AS routine for matrix-vector operations is
crLlcial to achieve the high efficiency. On one Paragon node, the B1.AS matrix-vector multiplication SGl~MV
gels S3 Mlil .O1)S for matrix size of 10002 and 67MI~1 .O1)S for matrix si~e of 2002.)

‘1’he. PCG solve~ spends 27.5% of the time on communications for this problem on 5 12-nodes. During each
iteration, most of the communication time is spent on sending or receiving (on average) 536 messages per
processor with (on average,) 166 floating point numbers in a message. These percentage numbers on peak
total speed and on communication indicate the highly scalable nature of the underlying algorithms.

It should be noted this performance is achieved under s[andnrd opcmting environment supported by ven-
dor and involving no simc.inl optimization targeted for the specific computer --- the perfc)rmance is
achieved main] y due to proper algorithm desigl~/inll>le~~~e.nt ations, and therefore more representative of what
could be achieved by average users. [rI’he codes run under NX, not the much faster SlJNh40S, and with no
special assembly programming, except the standard vendor-supported HI .AS package.]

8

,
N

Although Mflops rating is important for performance characterizations, problem solution time is the direct
● target for application scientists. The parallel cocks reduces the entire problem solution time by more than a

factor of 100 by going to 5 12-node Paragon from 1 -head C90. We note that this dramatic 1-eduction comes
from two factors. C)ne is the high Mftops achieved on the51 ?-node Paragon (vs. about 130 Mflops on C90).
‘l’he other is the fact that on C90 the innovation matrix blocks am re-computed on the fly as needed due to
mcmor y shortage, therefore considerable y increases the total computation unnecessarily y. Note also, the corn-
putation on I’arag,on is in single p-ccision (limited by 32. MF~/nocle memory on Paragon; with accumulation
variables in double precision, it appears to be adequate), while its double precision on C90. I’hcy both con-
verge. to same residual.

We note that OUI problem solution time includes ICI and mesh partition/matrix distribution times, unlike many
other applications where the problem mesh partitioned and matrix distribution are done in a separate prepro-
cessing and not included in their solution time. l’his is because out codes includes partitioncr, distributor,
etc., in the same run-time executab]c.

25600.0

12800.0

6400.0

& 3200.0
0
ii 1600.0
22

800.0

400.0

200.0

100.0
I

50.0

—.

/“
/

1 2 4 8 1 6 32 64
Number of Processors

/

128

/

—-

}

256 512

Figure 3. Performance of the PCG solver.

‘1’hc two dominant parts remaining in the assimilation problem are the assembly of the matrix entries of the
innovation and the fold-back matrix, as clearly indicated by their timings shown in ‘l’able 1. ‘l’hey are iilmost

perfectly paralle]ized in our in~plcnwntation, though a 10% level of load-imbalance still exists. ‘J’his CCWICJ be
improved by using a more sophisticated distribution algorithm, thereby reducing the CHJ time by about
10%. IIecause matrix entries are physical correlations which have many complex formulations, involving

transcendental functions and many branching, they are carried oL]t at tyj>ical scalar processor spe.ecl (about

9

, .,
b

5GFl .C)PS in this case). Significant inlprovements in this part requires improving the sequcntia] codes them-
. selves. (1-m direction is careful programming of the physical correlations to take fLlll advantage of the RISC

pipc]ined processor archite,ctuce. Another direction is to reformulate the basic ccm~pLltational stages such that
some entities/con~binations can be re-used many times, i e., reduce the amount of computation itself, For
example, calculation of the relatively expensive hori~ontal correlations should be structLll”ed in such a way
that it is done once for all elevation levels. In fact, the programming strL1ctures in the fold back part have been
designed with such an optimization in mind.

9.1 C o n c l u s i o n s

We have designed and implemented a set of highly efficient and highly scalable algorithms for the PSAS data
assimilation package, and achieved a 100-fold solution time, reduction on a 512 node Intel Paragon parallel
platform over a single head of a tray UK). “J’his cle,ar]y demonstrates that data assimilation problems are well
suited for distributed-memory massively parallel computer architectures. In particular, this work den]on-
strates that irregular and unstructured problems such as the data assimilation problem can be efficiently
implemented on this type of architecture, with good undcrst andi ng of the problem, careful (rc) design of al 1
necessary algorithms involved and effective usc of explicit message passing. By focusing on the algorithms,
the application achieves a high sustained performance. Since no speciality.d optimiTations targeted for the
particular computer is done,, these performance numbers arc. more representative of what could be achieved
by average user s..

‘1’hc parallel PSAS package now meets and exceeds the DAO real-time production computing requirements.
It will also improve the DAO operations significantly: many problems previously unexplored due to their
huge computational requirements now can be solved in a timely manner.

Ackl]ow’lcdgi]]ci)t. Clara Chan and Donald Gennery at JP1, contributed to this work by writing portions of
the code. We thank Peter I,yster, Arlindo Ila Silva, and Jirlg Guo at the DA() for making the Clay C90 code
available to us and helping us in understanding the problcm. Access to the 5 12-node Paragon at Caltech is
provided by the NASA I lPCC Program. ‘l’his work is part of a NSAS IIPCC MS Grand -Cha]lengc Applica-
tion project.

“l’he research described here was carried out by the Jet Propulsion 1.aboratory, California 1 nstitute, of ‘lkchnol-
ogy,, under a contract with the National Aeronautics and Space A.dminist[ation,

References

[1] R. Daley, “Atn~osphere Data Analysis”, Cambridge University Press, New York, 1991

[2] J. Pfaendtner, S. }?]oom, D. I.amich, M. Seablom. M. Sie,nkiewicz, J. Stobie, A. da Silva, I.documentation
of the Goddard Earth C)bserving System l>ata Assimilation System - Version 1, NASA ~kch Menlo,1995

[3] A. l~a Silva, J. Pfaendtner, J. Guo, M. Sienkiewic~, and S.1{. Cohn, Assessing the Effects of I>ata Selec-
tion with DAC)’S Physical-space Statistical Analysis System, I)roceeclings of lnternationa] Symposium on
Assimilation of Observations, ‘Iokyo, Japan, March, 1995.

[4] II,Q. I>i~~g and R.D. Ferraro, “Slices: A Scalable Concurrent Partitioned for lJnstructure.d Finite I+lement
Meshes”, Proceedings of SIAM 7th Conference, for Parallel Processing, p.492, 1995.

[S] II,Q. Ding and R.D. Ferraro, “A General Purpose Parallel Sparse Matrix Solvers Package”, Proceedings
of 9[h lnternationa] Parallel Processing Symposium, p.70, April 1995.

10

